Elimination of Tumor Suppressor Proteins during Liver Carcinogenesis
نویسندگان
چکیده
Liver cancer is one of the most lethal cancers. Quiescent liver expresses up to 20 tumor suppressor proteins including Rb, p53, CCAAT-Enhancer-Binding Protein (C/EBP)α, Hepatocyte Nuclear Factor (HNF4)α and p16 and it is well protected from development of liver cancer. However, the negative control of liver proliferation by these factors and other tumor suppressor genes is eliminated in liver cancer. Studies of liver regeneration after surgery and injury have provided fundamental mechanisms on how liver neutralizes tumor suppressor proteins for the time of regeneration; however, studies of liver cancer in animal models and in human samples showed several additional pathways of this neutralization. One of these additional pathways includes activation of a small subunit of the proteasome, Gankyrin. Gankyrin is dramatically increased in human hepatocellular carcinoma (HCC) and in animal models of carcinogenesis. Once activated Gankyrin triggers degradation of main tumor suppressor proteins during development of liver cancer using slightly different mechanisms. Recent studies identified mechanisms which repress Gankyrin in quiescent livers and mechanisms of activation of Gankyrin in liver cancer. These mechanisms involve a communication between Farnesoid X Receptor (FXR) signaling and chromatin remodelling proteins mediated by members of C/EBP family. It has been recently shown that C/EBPα plays a critical role in this network and that the activation of C/EBPα in cirrhotic livers with HCC inhibits cancer progression. This C/EBPαdependent inhibition of liver cancer involves activation of a majority of tumor suppressor genes and repression of tumor initiating pathways such as β-catenin and c-myc. These recent findings provide a background for FXR-based and C/EBPα-based approaches to treat liver cancer.
منابع مشابه
Regulation of the p53 tumor suppressor protein.
Mutations in the p53 tumor suppressor gene occur in about 50% of all human tumors, making it the most frequent target for genetic alterations in cancer (for recent reviews on p53 see Refs. 1–5). Such mutations probably facilitate carcinogenesis primarily through abrogating the tumor suppressor activities of the wild type p53 protein, although at least some forms of tumor-associated mutant p53 p...
متن کاملBlood Serum Alpha Fetoprotein Enhancer Binding Protein, a Tumor Suppressor, Decreases in Chronic HBV Hepatitis Patients as Hepatocellular Cancer Appears
Chronic hepatitis increases the risk of hepatocellular carcinoma (HCC). To test whether circulating proteins reflect hepatic carcinogenesis, sera from patients and controls were albumin depleted, enriched for glycoproteins, digested with trypsin, and subjected to reverse phase chromatography and tandem mass spectrometry. Alpha-fetoprotein enhancer binding protein (AFPebp), a tumor suppressor, w...
متن کاملTwo Steps Methylation Specific PCR for Assessment of APC Promoter Methylation in Gastric Adenocarcinoma
Gastric Cancer (GC) is the second most common cancer in the world and a leading cause of cancer-related mortality. Methylation of promoter CpG islands (CGIs) belonging to tumor suppressor genes causes transcriptional silencing of their corresponding genes leading to carcinogenesis and other disorders. Adenomatous Polyposis Coli (APC) a tumor suppressor gene is inactivated by methylation of prom...
متن کاملAnalysis of the transcriptional regulation of cancer-related genes by aberrant DNA methylation of the cis-regulation sites in the promoter region during hepatocyte carcinogenesis caused by arsenic
Liver is the major organ for arsenic methylation metabolism and may be the potential target of arsenic-induced cancer. In this study, normal human liver cell was treated with arsenic trioxide, and detected using DNA methylation microarray. Some oncogenes, tumor suppressor genes, transcription factors (TF), and tumor-associated genes (TAG) that have aberrant DNA methylation have been identified....
متن کاملRole of PINCH and Its Partner Tumor Suppressor Rsu-1 in Regulating Liver Size and Tumorigenesis
Particularly interesting new cysteine-histidine-rich protein (PINCH) protein is part of the ternary complex known as the IPP (integrin linked kinase (ILK)-PINCH-Parvin-α) complex. PINCH itself binds to ILK and to another protein known as Rsu-1 (Ras suppressor 1). We generated PINCH 1 and PINCH 2 Double knockout mice (referred as PINCH DKO mice). PINCH2 elimination was systemic whereas PINCH1 el...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015